首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68812篇
  免费   8859篇
  国内免费   5404篇
电工技术   7834篇
技术理论   6篇
综合类   7125篇
化学工业   11412篇
金属工艺   2813篇
机械仪表   5040篇
建筑科学   3728篇
矿业工程   2048篇
能源动力   5601篇
轻工业   1715篇
水利工程   5458篇
石油天然气   4416篇
武器工业   831篇
无线电   4016篇
一般工业技术   6307篇
冶金工业   3350篇
原子能技术   1647篇
自动化技术   9728篇
  2024年   152篇
  2023年   1063篇
  2022年   1797篇
  2021年   2202篇
  2020年   2465篇
  2019年   2245篇
  2018年   2018篇
  2017年   2529篇
  2016年   2796篇
  2015年   2842篇
  2014年   3922篇
  2013年   4655篇
  2012年   4546篇
  2011年   5254篇
  2010年   3678篇
  2009年   3927篇
  2008年   3832篇
  2007年   4404篇
  2006年   4230篇
  2005年   3743篇
  2004年   3173篇
  2003年   2805篇
  2002年   2363篇
  2001年   1964篇
  2000年   1670篇
  1999年   1433篇
  1998年   1130篇
  1997年   1006篇
  1996年   919篇
  1995年   849篇
  1994年   734篇
  1993年   598篇
  1992年   483篇
  1991年   314篇
  1990年   316篇
  1989年   220篇
  1988年   177篇
  1987年   115篇
  1986年   91篇
  1985年   48篇
  1984年   74篇
  1983年   57篇
  1982年   42篇
  1981年   21篇
  1980年   19篇
  1979年   32篇
  1978年   12篇
  1977年   11篇
  1959年   28篇
  1951年   24篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
51.
Product formulations for industrial processes are typically developed at laboratory scale. However, the mixing conditions are not easily mimicked in the laboratory. A rotational device is proposed in this study as a fast laboratory-scale formulation development, which enables mimicking the mixing conditions in the industrial process. The geometrical configurations of the rotational device are from rheometry devices (plate-plate and cone-plate). The main advantages of this method are the small amounts of raw materials and shorter testing times. This methodology is applied to an industrial case study, the reaction injection molding (RIM) process. The mixing length scales evolution in the rotational rheometer were matched to those in RIM machines. The main novelty of this study is the introduction of a protocol that bridges the processing conditions at laboratory using small amounts of raw materials to high throughput continuous flow reactors.  相似文献   
52.
This study aims to investigate the effect of ultrasonic waveforms on the gas–liquid mass transfer process. For a given load power (P), continuous rectangular wave yielded stronger bubble oscillation and higher mass transfer coefficient (kLa) than continuous triangular and sinusoidal wave. For pulsed ultrasound, the kLa decreased monotonically with decreasing duty ratio (D), resulting in weak enhancement at low D (≤33%). For a given average load power (PA), concentrating the P for a shorter period resulted in a higher kLa due to stronger cavitation behavior. For a given PA and D, decreasing the pulse period (T) led to an increase in kLa, which reached a constant high level when the T fell below a critical value. By optimizing the D and T, a kLa equivalent to 92% of that under continuous ultrasound was obtained under pulsed ultrasound at a D of 67%, saving 33% in power consumption.  相似文献   
53.
The pressure drop prediction of wet gas across single-orifice plate in horizontal pipes had been solved satisfactorily under an annular-mist flow in the upstream of orifice plates. However, this pressure drop prediction is still not clearly determined when the upstream is in an intermittent flow or stratified flow, which is corresponding to a region of low FrG (gas phase Froude number) in the flow pattern map of wet gases. In this study, the wet gas pressure drop across a single-orifice plate was experimentally investigated in the low FrG region. By the experiment, the flow pattern transition in the downstream of single-orifice plates, as well as the effects of FrG and FrL (liquid phase Froude number) on ΦG (gas phase multiplier), were determined and compared when the upstream is in the flow pattern transition and the stratified flow region, respectively. Prediction performances were examined on the available pressure drop models. It was found that no model could be capable of jointly predicting the wet gas pressure drop in the low FrG region with an acceptable accuracy. With a new method of correlating FrG and FrL simultaneously, new correlations were proposed for the low FrG region. Among which the modified Chisholm model shows the best prediction accuracies, with the prediction deviations of ΦG being within 7% and 3% when the upstream is in flow pattern transition and stratified flow region, respectively.  相似文献   
54.
个人信息因其自身携带隐私特性,与每个个体息息相关。个人信息保护不当,影响公众权益、企业利益以及社会秩序。在互联网、大数据、5G万物互联的时代,个人信息被广泛收集和使用,必须妥善解决个人信息保护问题,才能保障整个数据产业健康发展。而现有的个人信息保护方法或技术,不足以应对新形势下的保护诉求。基于数据运营安全的个人信息保护,针对当前个人信息保护的新形势和新诉求,提出结合人工智能,通过数据运营安全对结构化、半结构化、非结构化的个人信息流动的保护,涵盖从生产到运维,从采集、传输、存储、处理、分析、共享、销毁全生命周期保护,深入数据运营中内嵌防护,同时与业务解耦,达到保护个人信息安全的目标。  相似文献   
55.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
56.
A new pyrophosphate(V) of the formula Co5Cr2(P2O7)4 was obtained in the system Co2P2O7–Cr4(P2O7)3 as a result of solid-state reactions taking place between different reactants. The new compound crystallizes in the orthorhombic system and belongs to the family of pyrophosphates of the general formula M52+M23+(P2O7)4 and is probably isostructural with Fe52+Fe23+(P2O7)4. Powder diffraction pattern, infrared spectrum and SEM image of the new compound were presented. As a new potential inorganic pigment, Co5Cr2(P2O7)4 was tested for its thermal stability, particle size distribution and colour properties, which were studied both for powder and after introduction into organic matrix and leadless ceramic glaze. The colour of Co5Cr2(P2O7)4 powder was defined as deep grey with the colour coordinates L*/a*/b* = 60.63/-1.42/-3.41 and according to the hue angle (h° = 247.39°) it belongs to the blue region. Co5Cr2(P2O7)4, with its relatively high thermal stability (t m = 1230 ± 10 °C) and appropriate colour properties, is a good candidate to be used as inorganic pigment for colouring of acrylic paints. In the case of leadless glaze, the obtained compound acts as a dye.  相似文献   
57.
This paper discusses the capability of Guo et al.'s (2021) equations to determine the discharge of radial gates under submerged flow conditions. It was concluded that Guo et al.'s (2021) equations are associated with error reduction compared to the Incomplete Self-Similarity (ISS) theory and the calibration method. However, it does not have a significant advantage over Energy-Momentum (E-M) approach. Employing E-M principles, new equations were proposed to determine the discharge of radial gates, which has some advantages compared to Guo et al. (2021), such as (1) error reduction under partially and fully submerged flow conditions, (2) least dependence on the empirical constants, (3) uniformity of form over the entire submerged condition, and (4) no need to classify the submerged flow. Field calibration showed that the proposed equations in the present study for a single gate predict the discharge of parallel radial gates with a mean absolute error of less than 4.5% subject to the submerged operation of all open gates.  相似文献   
58.
We investigate nonlinear phase dynamics of an ideal kink mode, induced by E × B flow. Here the phase is the cross phase(θ_c) between perturbed stream function of velocity■ and magnetic field ■, i.e. θ_c= θ_φ-θ_ψ. A dimensionless parameter, analogous to the Richardson number,■(γ_(kink): the normalized growth rate of the pure kink mode; ■: normalized E × B shearing rate) is defined to measure the competition between phase pinning by the current density and phase detuning by the flow shear. When R_i 1, θ_c is locked to a fixed value,corresponding to the conventional eigenmode solution. When R_i≤1, θ_c enters a phase slipping or oscillating state, corresponding to a nonmodal solution. The nonlinear phase dynamics method provides a more intuitive explanation of the complex dynamical behavior of the kink mode in the presence of E × B shear flow.  相似文献   
59.
As a highly complex and time-varying process, gas-water two-phase flow is commonly encountered in industries. It has a variety of typical flow states and transition flow states. Accurate identification and monitoring of flow states is not only beneficial to further study of two-phase flow but also helpful for stable operation and economic efficiency of process industry. Combining canonical variate analysis (CVA) and Gaussian mixture model (GMM), a strategy called multi-CVA-GMM is proposed for flow state monitoring in gas-water two-phase flow. CVA is used to extract flow state features from the perspective of correlation between historical data and future data, which solves the cross correlation and temporal correlation of multi-sensor measurement data. GMM calculates the possibility that the current flow state belongs to each typical flow pattern and judges the current flow state by probability indicators. It is conducive to follow-up use of Bayesian inference probability and Mahalanobis distance-based (BID) indicator for flow state monitoring, which avoids repeated traversal of multiple CVA-GMM models and improves the efficiency of the monitoring process. The probability indicators can also be used to analyze transition flow states. The method combining the probabilistic idea of GMM with the deterministic idea of multimodal modeling can accurately identify the current flow state and effectively monitor the evolution of flow state. The multi-CVA-GMM method is validated by using the measured data of the horizontal flow loop of gas-water two-phase flow experimental facility, and its effectiveness is proved.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号